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Parameter Estimation of Heavy-Tailed AR Model
With Missing Data Via Stochastic EM
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Abstract—The autoregressive (AR) model is a widely used model
to understand time series data. Traditionally, the innovation noise
of the AR is modeled as Gaussian. However, many time series appli-
cations, for example, financial time series data, are non-Gaussian,
therefore, the AR model with more general heavy-tailed innova-
tions is preferred. Another issue that frequently occurs in time
series is missing values due to system data record failure or unex-
pected data loss. Although there are numerous works about Gaus-
sian AR time series with missing values, as far as we know, there
does not exist any work addressing the issue of missing data for
the heavy-tailed AR model. In this paper, we consider this issue
for the first time, and propose an efficient framework for parame-
ter estimation from incomplete heavy-tailed time series based on a
stochastic approximation expectation maximization coupled with
a Markov Chain Monte Carlo procedure. The proposed algorithm
is computationally cheap and easy to implement. The convergence
of the proposed algorithm to a stationary point of the observed
data likelihood is rigorously proved. Extensive simulations and
real datasets analyses demonstrate the efficacy of the proposed
framework.

Index Terms—AR model, heavy-tail, missing values, SAEM,
Markov chain Monte Carlo, convergence analysis.

I. INTRODUCTION

IN THE recent era of data deluge, many applications collect
and process time series data for inference, learning, param-

eter estimation, and decision making. The autoregressive (AR)
model is a commonly used model to analyze time series data,
where observations taken closely in time are statistically depen-
dent on others. In an AR time series, each sample is a linear
combination of some previous observations with a stochastic
innovation. An AR model of order p, AR(p), is defined as

yt = ϕ0 +
p∑

i=1

ϕiyt−i + εt , (1)

where yt is the t-th observation, ϕ0 is a constant, ϕi’s are au-
toregressive coefficients, and εt is the innovation associated
with the t-th observation. The AR model has been successfully
used in many real-world applications such as DNA microarray
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data analysis [1], EEG signal modeling [2], financial time series
analysis [3], and animal population study [4], to name but a few.

Traditionally, the innovation εt of the AR model is assumed
to be Gaussian distributed, which, as a result of the linearity of
the AR model, means that the observations are also Gaussian
distributed. However, there are situations arising in applications
of signal processing and financial markets where the time se-
ries are non-Gaussian and heavy-tailed, either due to intrinsic
data generation mechanism or existence of outliers. Some ex-
amples are, stock returns [3], [5], brain fMRI [6], [7], and black-
swan events in animal population [4]. For these cases, one may
seek an AR model with innovations following a heavy-tailed
distribution such as the Student’s t-distribution. The Student’s
t-distribution is one of the most commonly used heavy-tailed
distributions [8]. The authors of [9] and [10] have considered an
AR model with innovations following a Student’s t-distribution
with a known number of degrees of freedom, whereas [11] and
[12] investigated the case with an unknown number of degrees
of freedom. The Student’s tAR model performs well for heavy-
tailed AR time series and can provide robust reliable estimates
of the regressive coefficients when outliers occur.

Another issue that frequently occurs in practice is missing
values during data observation or recording process. There are
various reasons that can lead to missing values: values may not
be measured, values may be measured but get lost, or values may
be measured but are considered unusable [13]. Some real-world
cases are: some stocks may suffer a lack of liquidity resulting in
no transaction and hence no price recorded, observation devices
like sensors may break down during measurement, and weather
or other conditions disturb sample taking schemes. Therefore,
investigation of AR time series with missing values is signifi-
cant. Although there are numerous works considering Gaussian
AR time series with missing values [14]–[17], less attention has
been paid to heavy-tailed AR time series with missing values,
since parameter estimation in such a case is complicated due
to the intractable problem formulation. The frameworks for pa-
rameter estimation for heavy-tailed AR time series in [9]–[12]
require complete data, and thereby, are not suited for scenarios
with missing data. The objective of the current paper is to deal
with this challenge and develop an efficient framework for pa-
rameter estimation from incomplete data under the heavy-tailed
time series model via the expectation-maximization (EM) type
algorithm.

The EM algorithm is a widely used iterative method to obtain
the maximum likelihood (ML) estimates of parameters when
there are missing values or unobserved latent variables. In each
iteration, the EM algorithm maximizes the conditional expec-
tation of the complete data likelihood to update the estimates.
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Many variants of the EM algorithm have been proposed to deal
with specific challenges in different missing value problems.
For example, to tackle the problem posed by the intractabil-
ity of the conditional expectation of the complete data log-
likelihood, a stochastic variant of the EM algorithm, which ap-
proximates the expectation by drawing samples of the latent
variables from the conditional distribution, has been proposed
in [18], [19]. The stochastic EM has also been quite popular to
curb the curse of dimensionality [14], [20], since its computa-
tion complexity is lower than the EM algorithm. The expectation
conditional maximization (ECM) algorithm has been suggested
to deal with the unavailability of the closed-form maximizer
of the expected complete data log-likelihood [21]. The reg-
ularized EM algorithm has been used to enforce certain struc-
tures in parameter estimates like sparsity, low-rank, and network
structure [22].

In this paper, we develop a provably convergent low cost
algorithmic framework for parameter estimation of the AR
time series model with heavy-tailed innovations from incom-
plete time series. As far as we know, there does not exist any
convergent algorithmic framework for such problem. Following
[9]–[11], here we consider the AR model with the Student’s t
distributed innovations. We formulate an ML estimation prob-
lem and develop an efficient algorithm to obtain the ML es-
timates of the parameters based on the stochastic EM frame-
work. To tackle the complexity of the conditional distribution
of latent variables, we propose a Gibbs sampling scheme to
generate samples. Instead of directly sampling from the com-
plicated conditional distribution, the proposed algorithm just
need to sample from Gaussian distributions and gamma dis-
tributions alternatively. The convergence of the proposed al-
gorithm to a stationary point is established. Simulations on
real data and synthetic data show that the proposed framework
can provide accurate estimation of parameters for incomplete
time series, and is also robust against possible outliers. Al-
though here we only focus on the Student’s t distributed in-
novation, the idea of the proposed approach and the algorithm
can also be extended to the AR model with other heavy-tailed
distributions.

This paper is organized as follows. The problem formulation
is provided in Section II. The review of the EM and its stochastic
variants is presented in Section III. The proposed algorithm
is derived in Section IV. The convergence analysis is carried
out in Section V. Finally, Simulation results for the proposed
algorithm applied to both real and synthetic data are provided in
Section VI, and Section VII concludes the paper.

II. PROBLEM FORMULATION

For simplicity of notations, we first introduce the AR(1)
model. Suppose a univariate time series y1 , y2 , . . ., yT follows
an AR(1) model

yt = ϕ0 + ϕ1yt−1 + εt , (2)

where the innovations εt’s follow a zero-mean heavy-tailed

Student’s t-distribution εt
i.i.d.∼ t(0, σ2 , ν). The Student’s t-

distribution is more heavy-tailed as the number of degrees of
freedom ν decreases. Note that the Gaussian distribution is a
special case of the Student’s t-distribution with ν = +∞.

Given all the parameters ϕ0 , ϕ1 , σ2 and ν, the distribution of
yt conditional on all the preceding data Ft−1 , which consists of
y1 , y2 , . . . , yt−1 , only depends on the previous sample yt−1 :

p
(
yt |ϕ0 , ϕ1 , σ

2 , ν,Ft−1
)

= p
(
yt |ϕ0 , ϕ1 , σ

2 , ν, yt−1
)

= ft
(
yt ;ϕ0 + ϕ1yt−1 , σ

2 , ν
)

=
Γ
(
ν+1

2

)
√
νπσΓ

(
ν
2

)
(

1 +
(yt − ϕ0 − ϕ1yt−1)

2

νσ2

)− ν + 1
2

,

(3)

where ft(·) denotes the probability density function (pdf) of a
Student’s t-distribution.

In practice, a certain sample yt may be missing due to various
reasons, and it is denoted by yt = NA (not available). Here we
assume that the missing-data mechanism is ignorable, i.e., the
missing does not depend on the value [13]. Suppose we have
an observation of this time series with D missing blocks as
follows:

y1 , . . . , yt1 ,NA, . . . ,NA, yt1 +n1 +1 , . . . ytd ,NA, . . . ,NA,

ytd +nd +1 , . . . , ytD ,NA, . . . ,NA, ytD +nD +1 , . . . , yT ,

where, in the d-th missing block, there are nd missing samples
ytd +1 , . . . , ytd +nd , which are surrounded from the left and the
right by the two observed data ytd and ytd +nd +1 . We set for
convenience t0 = 0 and n0 = 0. Let us denote the set of the
indexes of the observed values by Co, and the set of the indexes
of the missing values byCm. Also denote y = (yt , 1 ≤ t ≤ T ),
yo = (yt , t ∈ Co), and ym = (yt , t ∈ Cm).

Let us assume θ = (ϕ0 , ϕ1 , σ
2 , ν) ∈ Θ with Θ = {θ|σ2 >

0, ν > 0}. Ignoring the marginal distribution of y1 , the log-
likelihood of the observed data is

l (θ;yo) = log
(∫

p (y;θ) dym

)

= log

(∫ T∏

t=2

p (yt |θ,Ft−1) dym

)

= log

(∫ T∏

t=2

ft
(
yt ;ϕ0 + ϕ1yt−1 , σ

2 , ν
)

dym

)
. (4)

Then the maximum likelihood (ML) estimation problem for θ
can be formulated as

maximize
θ∈Θ

l (θ;yo) . (5)

The integral in (4) has no closed-form expression, thus, the
objective function is very complicated, and we cannot solve the
optimization problem directly. In order to deal with this, we re-
sort to the EM framework, which circumvents such difficulty by
optimizing a sequence of simpler approximations of the original
objective function instead.

III. EM AND ITS STOCHASTIC VARIANTS

The EM algorithm is a general iterative algorithm to solve
ML estimation problems with missing data or latent data. More
specifically, given the observed data X generated from a statis-
tical model with unknown parameter θ, the ML estimator of the
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parameter θ is defined as the maximizer of the likelihood of the
observed data

l (X;θ) = log p(X|θ). (6)

In practice, it often occurs that l(X;θ) does not have manage-
able expression due to the missing data or latent data Z, while
the likelihood of complete data p(X,Z|θ) has a manageable
expression. This is when the EM algorithm can help. The EM
algorithm seeks to find the ML estimates by iteratively applying
these two steps [23]:

(E) Expectation: calculate the expected log-likelihood of
the complete data set (X,Z) with respect to the current
conditional distribution of Z given X and the current
estimate of the parameter θ(k) :

Q
(
θ|θ(k)

)
=
∫

log p (X, Z|θ) p
(
Z|X,θ(k)

)
dZ,

(7)
where k is the iteration number.

(M) Maximization: find the new estimate

θ(k+1) = arg max
θ

Q
(
θ|θ(k)

)
. (8)

The sequence {l(X;θ(k))} generated by the EM algorithm is
non-decreasing, and the limit points of the sequence {θ(k)}
are proven to be the stationary points of the observed data
log-likelihood under mild regularity conditions [24]. In fact,
the EM algorithm is a particular choice of the more general
majorization-minimization algorithm [25].

However, in some applications of the EM algorithm, the ex-
pectation in the E step cannot be obtained in closed-form. To
deal with this, Wei and Tanner proposed the Monte Carlo EM
(MCEM) algorithm, in which the expectation is computed by
a Monte Carlo approximation based on a large number of in-
dependent simulations of the missing data [26]. The MCEM
algorithm is computationally very intensive.

In order to reduce the amount of simulations required by the
MCEM algorithm, the stochastic approximation EM (SAEM)
algorithm replaces the E step of the EM algorithm by a stochastic
approximation procedure, which approximates the expectation
by combining new simulations with the previous ones [18]. At
iteration k, the SAEM proceeds as follows:

(E-S1) Simulation: generate L realizations Z(k,l)(l = 1,
2 . . . , L) from the conditional distribution
p(Z|X,θ(k))

(E-A) Stochastic approximation: update Q̂(θ|θ(k)) accor-
ding to

Q̂
(
θ|θ(k)

)

= Q̂
(
θ|θ(k−1)

)
+ γ(k)

(
1
L

L∑

l=1

log p
(
X, Z(k,l) |θ

)

− Q̂
(
θ|θ(k−1)

))
, (9)

where {γ(k)} is a decreasing sequence of positive
step sizes.

(M) Maximization: find the new estimate

θ(k+1) = arg max
θ

Q̂
(
θ|θ(k)

)
. (10)

The SAEM requires a smaller amount of samples per iteration
due to the recycling of the previous simulations. A small value
of L is enough to ensure satisfying results [27].

When the conditional distribution is very complicated, and
the simulation step (E-S1) of the SAEM cannot be directly per-
formed, Kuhn and Lavielle proposed to combine the SAEM
algorithm with a Markov Chain Monte Carlo (MCMC) proce-
dure, which yields the SAEM-MCMC algorithm [19]. Assume
the conditional distribution p(Z|X,θ) is the unique stationary
distribution of the transition probability density function Πθ,
the simulation step of the SAEM is replaced with

(E-S2) Simulation: draw realizations Z(k,l)(l = 1, 2 . . . , L)
based on the transition probability density function
Πθ(k ) (Z(k−1,l) , ·).

For each l, the sequence {Z(k,l)}k≥0 is a Markov chain with
the transition probability density function {Πθ(k ) }. The Markov
Chain generation mechanism needs to be well designed so that
the sampling is efficient and the computational cost is not too
high.

IV. SAEM-MCMC FOR STUDENT’S t AR MODEL

For the ML problem (5), if we only regard ym as missing
data and apply the EM type algorithm, the resulting conditional
distribution of the missing data is still complicated, and it is
difficult to maximize the expectation or the approximated ex-
pectation of the complete data log-likelihood. Interestingly, the
Student’s t-distribution can be regarded as a Gaussian mixture
[28]. Since εt ∼ t(0, σ2 , ν), we can present it as a Gaussian
mixture

εt |σ2 , τt ∼ N
(

0,
σ2

τt

)
, (11)

τt ∼ Gamma (ν/2, ν/2) , (12)

where τt is the mixture weight. Denote τ = {τt , 1 < t ≤ T}.
We can use the EM type algorithm to solve the above optimiza-
tion problem by regarding both ym and τ as latent data, and yo
as observed data.

The resulting complete data likelihood is

L (θ;y, τ )

= p (y, τ ;θ)

=
T∏

t=2

{
fN

(
yt ;ϕ0 + ϕ1yt−1 ,

σ2

τt

)
fg

(
τt ;

ν

2
,
ν

2

)}

=
T∏

t=2

{
1√

2πσ2/τt
exp
(
− 1

2σ2/τt
(yt − ϕ0 − ϕ1yt−1)

2
)

(
ν
2

) ν
2

Γ
(
ν
2

)τ
ν
2 −1
t exp

(
−ν

2
τt

)}

=
T∏

t=2

(
ν
2

) ν
2 τ

ν −1
2

t

Γ
(
ν
2

)√
2πσ2

exp
(
− τt

2σ2 (yt − ϕ0 − ϕ1yt−1)
2 − ν

2
τt

)
,

(13)
where fN (·) and fg (·) denote the pdf’s of the Normal (Gaussian)
and gamma distributions, respectively. Through some simple
derivation, it is observed that the likelihood of complete data
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belongs to the curved exponential family [29], i.e., the pdf can
be written as

L (θ;y, τ ) = h (y, τ ) exp (−ψ (θ) + 〈s (yo,ym, τ ) ,φ (θ)〉) ,
(14)

where 〈·, ·〉 is the inner product,

h (y, τ ) =
T∏

t=2

τ
− 1

2
t , (15)

ψ (θ) = − (T − 1)

{
ν

2
log
(ν

2

)
− log

(
Γ
(ν

2

))

− 1
2

log
(
σ2)− 1

2
log (2π)

}
, (16)

φ (θ) =
[
ν

2
, − 1

2σ2 , −
ϕ2

0

2σ2 , −
ϕ2

1

2σ2 ,
ϕ0

σ2 ,
ϕ1

σ2 , −
ϕ0ϕ1

σ2

]
,

(17)

and the minimal sufficient statistics

s (yo,ym, τ ) =

[
T∑

t=2

(log(τt) − τt),
T∑

t=2

τty
2
t ,

T∑

t=2

τt ,

T∑

t=2

τty
2
t−1 ,

T∑

t=2

τtyt ,

T∑

t=2

τtytyt−1 ,

T∑

t=2

τtyt−1

]
. (18)

Then the expectation of the complete data log-likelihood can
be expressed as

Q
(
θ|θ(k)

)

=
∫∫

log (L (θ;y, τ )) p
(
ym, τ |yo;θ(k)

)
dymdτ

=
∫∫

log
(
h (y, τ ) exp

(
−ψ (θ) + 〈s (yo,ym, τ ) ,φ (θ)〉

))

× p
(
ym, τ |yo;θ(k)

)
dymdτ

=
∫∫

log (h (y, τ )) p
(
ym, τ |yo;θ(k)

)
dymdτ

− ψ (θ) +
〈∫∫

s (yo,ym, τ ) p
(
ym, τ |yo;θ(k)

)
dymdτ ,

φ (θ)
〉

= −ψ (θ) +
〈
s̄
(
θ(k)
)
,φ (θ)

〉
+ const., (19)

where

s̄
(
θ(k)
)

=
∫∫

s (yo,ym, τ ) p
(
ym, τ |yo;θ(k)

)
dymdτ .

(20)
The EM algorithm is conveniently simplified by utilizing the
properties of the exponential family. The E step of the EM
algorithm is reduced to the calculation of the expected minimal
sufficient statistics s̄(θ(k)), and the M step is reduced to the
maximization of the function (19).

A. E Step

The conditional distribution of ym and τ given yo and θ is:

p (ym, τ |yo;θ)

=
p (y, τ ;θ)
p (yo;θ)

=
p (y, τ ;θ)∫∫

p (y, τ ;θ) dymdτ

∝ p (y, τ ;θ)

=
T∏

t=2

(
ν
2

) ν
2 τ

ν −1
2

t

Γ
(
ν
2

)√
2πσ2

exp
(
− τt

2σ2 (yt − ϕ0 − ϕ1yt−1)
2 − ν

2
τt

)

∝
T∏

t=2

τ
ν −1

2
t exp

(
− τt

2σ2 (yt − ϕ0 − ϕ1yt−1)
2 − ν

2
τt

)
. (21)

Since the integral
∫∫

p(y, τ ;θ)dymdτ does not have a closed-
from expression, we only know p(ym, τ |yo;θ) up to a scalar. In
addition, the proportional term is complicated, and we cannot get
closed-form expression for the conditional expectations s̄

(
θ(k))

or Q
(
θ|θ(k)). Therefore, we resort to the SAEM-MCMC algo-

rithm, which generates samples from the conditional distribution
using a Markov chain process, and approximates the expectation
s̄
(
θ(k)) and Q

(
θ|θ(k)) by a stochastic approximation.

We propose to use the Gibbs sampling method to generate the
Markov chains. The Gibbs sampler divides the latent variables
(ym, τ ) into two blocks τ and ym, and then generates a Markov
chain of samples from the distribution p(ym, τ |yo;θ) by draw-
ing realizations from its conditional distributions p(τ |ym,yo;θ)
and p(ym|τ ,yo;θ) alternatively. More specifically, at iteration
k, given the current estimate θ(k) , the Gibbs sampler starts with
(τ (k−1,l) ,y(k−1,l)

m )(l = 1, 2 . . . , L) and generate the next sam-
ple (τ (k,l) ,y(k,l)

m ) via the following scheme:
� sample τ (k,l) from p(τ |y(k−1,l)

m ,yo;θ(k)),
� sample y(k,l)

m from p(ym|τ (k,l) ,yo;θ(k)).
Then the expected minimal sufficient statistics s̄

(
θ(k)) and

the expected complete data likelihood Q
(
θ|θ(k)) are approxi-

mated by

ŝ(k) = ŝ(k−1) + γ(k)

(
1
L

L∑

l=1

s
(
yo,y

(k,l)
m , τ (k,l)

)
− ŝ(k−1)

)
,

(22)

Q̂
(
θ, ŝ(k)

)
= −ψ (θ) +

〈
ŝ(k) ,φ (θ)

〉
+ const. (23)

Lemmas 1 and 2 give the two conditional distributions p(τ |
ym,yo;θ) and p(ym|τ ,yo;θ). Basically, to sample from them,
we just need to draw realizations from certain Gaussian distri-
butions and gamma distributions, which is simple. Based on the
above sampling scheme, we can get the transition probability
density function of the Markov chain as follows:

Πθ (ym, τ , y′
m, τ

′) = p (τ ′|ym,yo;θ) p (y′
m|τ ′,yo;θ) . (24)
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Lemma 1: Given ym, yo, and θ, the mixture weights {τt}
are independent from each other, i.e.,

p (τ |ym,yo;θ) =
T∏

t=2

p (τt |ym,yo;θ) . (25)

In addition, τt follows a gamma distribution:

τt |ym,yo;θ

∼ Gamma

(
ν + 1

2
,

(yt − ϕ0 − ϕ1yt−1)
2 /σ2 + ν

2

)
.

(26)
Proof: See Appendix A-A. �
Lemma 2: Given τ , yo, and θ, the missing blocks yd =

[ytd +1 , ytd +2 , . . . , ytd +nd ]
T , where d = 1, 2, . . . ,D, are inde-

pendent from each other, i.e.,

p (ym|τ ,yo;θ) =
D∏

d=1

p (yd |τ ,yo;θ) . (27)

In addition, the conditional distribution of yd only depends on
the two nearest observed samples ytd and ytd +nd +1 with

yd |τ ,yo;θ ∼ N (μd ,Σd) , (28)

where the i-th component of μd

μd(i) =
i−1∑

q=0

ϕq1ϕ0 + ϕi1ytd +

∑i
q=1

ϕi−2 q
1

τt d + q

∑nd +1
q=1

ϕ
n d + 1−2 q
1
τt d + q

×
(
ytd +nd +1 −

nd∑

q=0

ϕq1ϕ0 − ϕnd +1
1 ytd

)
,

(29)

and the component in the i-th column and the j-th row of Σd

Σd(i,j )

=

⎛

⎝
min(i,j )∑

q=1

ϕi+j−2q
1

τtd +q
−
(∑i

q=1
ϕi−2 q

1
τt d + q

)(∑j
q=1

ϕj −2 q
1

τt d + q

)

∑nd +1
q=1

ϕ−2 q
1

τt d + q

⎞

⎠σ2 ,

(30)
where the sums of geometric progressions in μd(i) can be sim-
plified as

i−1∑

q=0

ϕq1ϕ0 =

⎧
⎨

⎩
iϕ0 , ϕ1 = 1,
ϕ0 (ϕi

1 −1)
ϕ1 −1 , ϕ1 �= 1,

(31)

and

nd∑

q=0

ϕq1ϕ0 =

⎧
⎨

⎩

(nd + 1)ϕ0 , ϕ1 = 1,

ϕ0

(
ϕ
n d + 1
1 −1

)

ϕ1 −1 , ϕ1 �= 1.
(32)

Proof: See Appendix A-B. �

B. M Step

After obtaining the approximation Q̂(θ, ŝ(k)) in (23), we need
to maximize it to update the estimates. The function Q̂(θ, ŝ(k))

can be rewritten as

Q̂
(
θ, ŝ(k)

)

= −ψ (θ) +
〈
ŝ(k) ,φ (θ)

〉
+ const.

= (T − 1)
{
ν

2
log
(ν

2

)
− log

(
Γ
(ν

2

))
− 1

2
log
(
σ2)
}

+
ν

2
ŝ

(k)
1 − ŝ

(k)
2

2σ2 − ϕ2
0 ŝ

(k)
3

2σ2 − ϕ2
1 ŝ

(k)
4

2σ2 +
ϕ0 ŝ

(k)
5

σ2 +
ϕ1 ŝ

(k)
6

σ2

− ϕ0ϕ1 ŝ
(k)
7

σ2 + const,

(33)
where ŝ(k)

i (i = 1, 2, . . . , 7) is the i-th component of ŝ(k) .
The optimization of ϕ0 , ϕ1 , and σ2 is decoupled from the

optimization of ν. Setting the derivatives of Q̂(θ, ŝ(k)) with
respect to to ϕ0 , ϕ1 , and σ2 to 0 gives

ϕ
(k+1)
0 =

ŝ
(k)
5 − ϕ

(k+1)
1 ŝ

(k)
7

ŝ
(k)
3

, (34)

ϕ
(k+1)
1 =

ŝ
(k)
3 ŝ

(k)
6 − ŝ

(k)
5 ŝ

(k)
7

ŝ
(k)
3 ŝ

(k)
4 −

(
ŝ

(k)
7

)2 , (35)

and
(
σ(k+1)

)2
=

1
T − 1

(
ŝ

(k)
2 +

(
ϕ

(k+1)
0

)2
ŝ

(k)
3 +

(
ϕ

(k+1)
1

)2
ŝ

(k)
4

− 2ϕ(k+1)
0 ŝ

(k)
5 − 2ϕ(k+1)

1 ŝ
(k)
6

+ 2ϕ(k+1)
0 ϕ

(k+1)
1 ŝ

(k)
7

)
. (36)

The ν(k+1) can be found by:

ν(k+1) = arg max
ν>0

f
(
ν, ŝ

(k)
1

)
(37)

with f(ν, ŝ(k)
1 ) = { ν2 log( ν2 ) − log(Γ( ν2 ))} + ν ŝ

(k )
1

2(T −1) . Accord-

ing to Proposition 1 in [30], ν(k+1) always exists and is unique.
As suggested in [30], the maximizer ν(k+1) can be obtained by
one-dimensional search, such as half interval method [31].

The resulting SAEM-MCMC algorithm is summarized in
Algorithm 1.

C. Particular Cases

In cases where some parameters in θ are known, we just need
to change the updates in M step accordingly, and the simulation
and approximation steps remain the same. For example, if we
know that the time series is zero mean [1], [12], i.e., ϕ0 = 0,
then the update for ϕ(k+1)

0 and ϕ(k+1)
1 should be replaced with

ϕ
(k+1)
0 = 0, (38)

and

ϕ
(k+1)
1 =

ŝ
(k)
6

ŝ
(k)
4

, (39)

If the time series is known to follow the random walk model
[14], which is a special case of AR(1) model with ϕ1 = 1, then
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Algorithm 1: SAEM-MCMC Algorithm for Student’s t
AR(1).

1: Initialize θ(0) ∈ Θ, ŝ(0) = 0, k = 0, and y(0,l)
m for

l = 1, 2 . . . , L..
2: for k = 1, 2, . . . do
3: Simulation:
4: for l = 1, 2 . . . , L do
5: sample τ (k,l) from p(τ |y(k−1,l)

m ,yo;θ(k)) using
Lemma 1,

6: sample y(k,l)
m for p(ym|τ (k,l) ,yo;θ(k)) using

Lemma 2.
7: end for
8: Stochastic approximation: evaluate ŝ(k) and

Q̂(θ, ŝ(k)) as in (22) and (23) respectively.
9: Maximization: update θ(k+1) as in (34), (35), (36)

and (37).
10: if stopping criteria is met then
11: terminate loop
12: end if
13: end for

the update for ϕ(k+1)
0 and ϕ(k+1)

1 should be replaced with

ϕ
(k+1)
0 =

ŝ
(k)
5 − ŝ

(k)
7

ŝ
(k)
3

, (40)

and

ϕ
(k+1)
1 = 1. (41)

D. Generalization to AR(p)

The above ML estimation method can be immediately gener-
alized to the Student’s t AR(p) model:

yt = ϕ0 +
p∑

i=1

ϕiyt−i + εt , (42)

where εt
i.i.d.∼ t(0, σ2 , ν). Similarly, we can apply the SAEM-

MCMC algorithm to obtain the estimates by considering τ and
ym as latent data, and yo as observed data. At each iteration, we
draw some realizations of τ and ym from the conditional distri-
bution p(ym, τ |yo;θ(k)) to approximate the expectation func-
tion Q(θ|θ(k)), and maximize the approximation Q̂(θ|θ(k)) to
update the estimates. The main difference is that the conditional
distribution of the AR(p) will become more complicated than
that of the AR(1), since each sample of the AR(p) has more de-
pendence on the previous samples. To deal with this challenge,
when applying the Gibbs sampling, we can divide the the latent
data (ym, τ ) into more blocks, τ as a block and each yi∈Cm

as
a block, so that the distribution of each block of latent variables
conditional on other latent variables will be easy to obtain and
sample from. For limit of space, we do not go into details here,
and we will consider this in our future work.

V. CONVERGENCE

In this section, we provide theoretical guarantee for the con-
vergence of the proposed algorithm. The convergence of the
simple deterministic EM algorithm has been addressed by many

different authors, starting from the seminal work in [23], to a
more general consideration in [24]. However, the convergence
analysis of stochastic variants of the EM algorithm, like the
MCEM, SAEM and SAEM-MCMC algorithms, is challenging
due to the randomness of sampling. See [18], [19], [32]–[35]
for a more general overview of these stochastic EM algorithms
and their convergence analysis. Of specific interest, the authors
in [18] introduced the SAEM algorithm, and established the al-
most sure convergence to the stationary points of the observed
data likelihood under mild additional conditions. The authors in
[19] coupled the SAEM framework with an MCMC procedure,
and they have given the convergence conditions for the SAEM-
MCMC algorithm when the complete data likelihood belongs
to the curved exponential family. The given set of conditions in
our case is as follows.

(M1) For any θ ∈ Θ,∫∫
‖s (yo,ym, τ ) ‖p (ym, τ |yo;θ) dymdτ <∞.

(43)
(M2) ψ(θ) and φ(θ) are twice continuously differentiable

on Θ.
(M3) The function

s̄ (θ) =
∫∫

s (yo,ym, τ ) p (ym, τ |yo;θ) dymdτ

(44)
is continuously differentiable on Θ.

(M4) The objective function

l (θ;yo) = log
(∫∫

p (y, τ ;θ) dymdτ

)
(45)

is continuously differentiable on Θ, and

∂θ

∫∫
p (y, τ ;θ) dymdτ =

∫∫
∂θp (y, τ ;θ) dymdτ .

(46)
(M5) ForQ(θ, s̄)=−ψ(θ)+〈s̄,φ(θ)〉 + const., there exists

a function θ̃(s̄) such that ∀s̄ and ∀θ ∈ Θ,Q(θ̃(s̄), s̄) ≥
Q(θ, s̄). In addition, the function θ̃(s̄) is continuously
differentiable.

(SAEM1) For all k, γ(k) ∈ [0, 1],
∑∞

k=1 γ
(k) = ∞ and

there exists 1
2 < λ ≤ 1 such that

∑∞
k=1(γ

(k))1+λ

<∞.
(SAEM2) l(θ;yo) is d times differentiable on Θ, where d =

7 is the dimension of s(yo,ym, τ ), and θ̃(s) is d
times differentiable.

(SAEM3)
1) The chain takes its values in a compact set

Ω.
2) The s(yo,ym, τ ) is bounded on Ω, and the

sequence {ŝ(k)} takes its values in a com-
pact subset.

3) For any compact subset V of Θ, there exists
a real constant L such that for any (θ,θ′) in
V 2

sup
(ym,τ ,y ′

m,τ
′)∈Ω2

∣∣∣Πθ (ym, τ , y′
m, τ

′)

− Πθ′ (ym, τ , y′
m, τ

′)
∣∣∣

≤ L|θ − θ′|.

(47)
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4) The transition probability Πθ generates a
uniformly ergodic chain whose invariant
probability is the conditional distribution
p(ym, τ |yo;θ).

In summary, the conditions (M1)–(M5) are all about the
model, and are conditions for the convergence of the determin-
istic EM algorithm. The conditions (M1) and (M3) require the
boundedness and continuous differentiability of the expectation
of the sufficient statistics. The conditions (M2) and (M4) guar-
antee the continuous differentiability of the complete data log-
likelihood l(θ;y, τ ), the expectation of the complete data likeli-
hood Q(θ|θ(k)), and the observed data log-likelihood l(θ;yo).
The condition (M5) indicates the existence of a global maxi-
mizer for Q(θ, s̄).

The conditions (SAEM1)-(SAEM3) are additional require-
ments for the SAEM-MCMC convergence. The condition
(SAEM1) is about the step sizes {γ(k)}. This condition can
be easily satisfied by choosing the step sizes properly. It is
recommended to set γ(k) = 1 for 1≤ k ≤ K and γ(k) = 1

k−K
for k ≥ K + 1, where K is a positive integer, since the initial
guess θ(0) may be far from the ML estimates we are looking
for, and choosing the first K step sizes equal to 1 allows the
sequence {θ(k)} to have a large variation and then converge to
a neighborhood of the maximum likelihood [27]. The condition
(SAEM2) requires d = 7 times differentiability of l(θ;yo) and
θ̂(ŝ(k)). The condition (SAEM3) imposes some constraints on
the generated Markov chains.

In [19], the authors have established the convergence of the
SAEM-MCMC algorithm to the stationary points. However,
their analysis assumes that complete data likelihood belongs to
the curved exponential family, and all these conditions (M1)-
(M5) and (SAEM1)-(SAEM3) are satisfied. These assumptions
are very problem specific, and do not hold trivially for our
case, since our conditional distribution of the latent variable is
extremely complicated. To comment on the convergence of our
proposed algorithm, we need to establish the conditions (M1)-
(M5) and (SAEM1)-(SAEM3) one by one. Finally, we have the
convergence result about our proposed algorithm summarized
in the following theorem.

Theorem 1: Suppose that the parameter space Θ is set to be
a sufficiently large bounded set1 with the parameter ν > 2, and
the Markov chain generated from (25) and (27) takes values
in a compact set2, the sequence {θ(k)} generated by Algo-
rithm 1 has the following asymptotic property: with probability
1, limk→+∞ d(θ(k) ,L) = 0, where d(θ(k) ,L) denotes the dis-
tance from θ(k) to the set of stationary points of observed data
log-likelihood L = {θ ∈ Θ, ∂ l(θ;yo)

∂θ = 0}.
Proof: Please refer to Appendix VII-B for the proof of the

conditions (M1)-(M5) and (SAEM2)-(SAEM3). The condition
(SAEM1) can be be easily satisfied by choosing the step sizes
properly as mentioned before. Upon establishing these condi-

1This means that the unconstrained maximizer of (33) (given by (34), (35),
(36), and (37)) lies in this bounded set.

2Theoretically, the Markov chain generated from (25) and (27) takes its values
in an unbounded set. However, in practice, the chain will not take very large
values, and we can consider the chain takes values in a very large compact set
[19], [27].

tions, the proof of this theorem follows straightforward from the
analysis of the work in [19]. �

VI. SIMULATIONS

In this section, we conduct a simulation study of the perfor-
mance of the proposed ML estimator and the convergence of the
proposed algorithm. First, we show that the proposed estimator
is able to make good estimates of parameters from the incom-
plete time series which have been synthesized to fit the model.
Second, we show its robustness to innovation outliers. Finally,
we test it on a real financial time series, the Hang Seng index.

A. Parameter Estimation

In this subsection, we show the convergence of the proposed
SAEM-MCMC algorithm and the performance of the proposed
estimator on incomplete Student’s t AR(1) time series with
different numbers of samples and missing percentages. The es-
timation error is measured by the mean square error (MSE):

MSE (θ) := E
[(
θ̂ − θtrue

)2
]
,

where θ̂ is the estimate for the parameter θ, and θtrue is its
true value. The parameter θ can be ϕ0 , ϕ1 , σ2 , and ν. The
expectation is approximated via Monte Carlo simulations using
100 independent incomplete time series.

We set ϕtrue
0 = 1, ϕtrue

1 = 0.5, (σtrue)2 = 0.01, and ν true =
2.5. For each incomplete data set yo, we first randomly gener-
ate a complete time series {yt} with T samples based on the
Student’s tAR(1) model. Then nmis number of samples are ran-
domly deleted to obtain an incomplete time series. The missing
percentage of the incomplete time series is ρ := nmis

T × 100%.
In Section V, we have established the convergence of the

proposed SAEM-MCMC algorithm to the stationary points of
the observed data likelihood. However, it is observed that the
estimation result obtained by the algorithm can be sensitive to
initializations due to the existence of multiple stationary points.
This is an inevitable problem since it is a non-convex opti-
mization problem. Interestingly, it is also observed that when
we initialize our algorithm using the ML estimates assuming
the Gaussian AR(1) model, the final estimates are significantly
improved, in comparison to random initializations. The ML es-
timation of the Gaussian AR model from incomplete data has
been introduced in [13], and the estimates can be easily obtained
via the deterministic EM algorithm. We initializeϕ(0)

0 ,ϕ(0)
1 , and

(σ(0))2 use the estimates from the Gaussian AR(1) model (ϕ0)g,

(ϕ1)g, and (σ2)g , and initialize y(0,l)
m using the mean of the

conditional distribution p(ym;yo, (ϕ0)g, (ϕ1)g, (σ2)g), which
is a Gaussian distribution. The parameter ν(0) is initialized as
a random positive number. In each iteration, we draw L = 10
samples. For the step sizes, we set γ(k) = 1 for 1≤ k ≤ 30 and
γ(k) = 1

k−30 for k ≥ 31. Figure 1 gives an example of applying
the proposed SAEM-MCMC algorithm to estimate the parame-
ters on a synthetic AR(1) data set with T = 300 and a missing
percentage ρ = 10%. We can see that the algorithm converges in
less than 100 iterations, where each iteration just needs L = 10
runs of Gibbs sampling, and also the final estimation error is
small. Table I compares the estimation results of the Student’s
t AR model and the Gaussian AR model. This testifies our
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Fig. 1. Estimates versus iterations.

TABLE I
ESTIMATION RESULTS FOR INCOMPLETE STUDENT’S t AR(1)

argument that, for incomplete heavy-tailed data, the traditional
method for incomplete Gaussian AR time series is too inef-
ficient, and significant performance gain can be achieved by
designing algorithms under heavy-tailed model.

Figure 2 shows the estimation results with the numbers of
samples T = 100, 200, 300, 400, 500 and the missing percent-
ages ρ = 10%, 20%, 30%, 40%. For reference, we have also
given the ML estimation result from the complete data sets (ρ =
0), which is obtained using the algorithm in [11]. We can ob-
serve that our method performs satisfactorily well even for high
percentage of missing data, and, with increasing sample sizes,
the estimates with missing values match with the estimates of
the complete data.

B. Robustness to Outliers

A useful characteristic of the Student’s t is its resilience to
outliers, which is not shared by the Gaussian distribution. Here
we illustrate that the Student’s t AR model can provide robust
estimation of autoregressive coefficients under innovation out-
liers.

An innovation outlier is an outlier in the εt process, and it
is a typical kind of outlier in AR time series [36], [37]. Due

Fig. 2. MSEs for the incomplete time series with different number of samples
and missing percentages.

to the temporal dependence of AR time series data, an innova-
tion outlier will affect not only the current observation yt , but
also subsequent observations. Figure 3 gives an example of a
Gaussian AR(1) time series contaminated by four innovation
outliers.

When an AR time series is contaminated by outliers, the tra-
ditional ML estimation of autoregressive coefficients based on
the Gaussian AR model, which is equivalent to least squares fit-
ting, will provide unreliable estimates. Although, for complete
time series, there are numerous works about the robust estima-
tion of autoregressive coefficients under outliers, unfortunately,
less attention was paid to robust estimation from incomplete
time series. As far as we know, only Kharin and Voloshko have
considered robust estimation with missing values [16]. In their
paper, they assume that φ0 is known and equal to 0. To be
consistent with Kharin’s method, in this simulation, we also as-
sume ϕtrue

0 is known and ϕtrue
0 = 0, although our method can

also be applied to the case where ϕtrue
0 is unknown.

We let ϕtrue
1 = 0.5 and εt

i.i.d.∼ N (0, 0.01). Note here the in-
novations follow a Gaussian distribution. We randomly gener-
ate an incomplete Gaussian AR(1) time series with T = 100
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Fig. 3. Incomplete AR(1) time series with four innovation outliers.

TABLE II
ESTIMATION AND PREDICTION RESULTS FOR INCOMPLETE GAUSSIAN

AR(1) TIME SERIES WITH OUTLIERS

samples and a missing percentage ρ = 0.1, and it is contami-
nated by four innovation outliers. The values of the innovation
outliers are set to be 5, −5, 5, −5, and the positions are selected
randomly. See Figure 3 for this incomplete contaminated time
series. The Gaussian AR(1) model, the Student’s tAR(1) model,
and Kharin’s method are applied to estimate the autoregressive
coefficient ϕ1 . After obtaining the estimate ϕ̂1 , we compute
the one-step-ahead predictions ŷt = ϕ̂1yt−1 and the prediction
error (ŷt − yt)2 for t ∈ Co and t− 1 ∈ Co . It is not surpris-
ing that the outliers are poorly predicted, so we omit it when
computing the averaged prediction error. Table II shows the es-
timation results and the one-step-ahead prediction errors. It is
clear that the ML estimator based on the Gaussian AR(1) has
been significantly affected by the presence of the outliers, while
the Student’s t AR(1) model is robust to them, since the outliers
cause the innovations to have a heavy-tailed distribution, which
can be modeled by the Student’s t distribution. Kharin’s method
does not perform well, either, as this method is designed for ad-
dictive outliers and replacement outliers, rather than innovation
outliers.

C. Real Data

Here we consider the returns of the Hang Seng index over 260
working days from Jan. 2017 to Nov. 2017 (excluding weekends
and public holidays). Figure 4 shows the quantile-quantile (QQ)
plot of the innovations obtained by fitting this time series to the
Student’s t AR(1) model. The deviation from the straight red
line indicates that the innovations are significantly non-Gaussian
and indeed heavy-tailed.

Fig. 4. Quantile-quantile plot of the innovations of the Hang Seng index
returns.

We divide the 260 returns into two parts: the estimation data,
which involves the first 250 samples, and the test data, which
involves the remaining 10 samples. First, we fit the estimation
data to the Gaussian AR(1) model and the Student’s t AR(1)
model, and estimate the parameters. Then we predict the test
data using the one-step-ahead predication method based on the
estimates, and compute the averaged prediction errors. Next, we
randomly delete 10 of the estimation data, and estimate the pa-
rameters of the Gaussian AR(1) model and the Student’s tAR(1)
model from this incomplete data set. Finally, we also make
predictions and compute the averaged prediction errors based
on these estimates of the parameters. The result is summarized
in Table III. We have the following conclusions: i) the Student’s
t AR(1) model performs better than the Gaussian AR(1) model
for this heavy-tailed time series, ii) the proposed parameter es-
timation method for incomplete Student’s t AR(1) time series
can provide similar estimates to the result of complete data.

VII. CONCLUSIONS

In this paper, we have considered parameter estimation of
the heavy-tailed AR model with missing values. We have for-
mulated an ML estimation problem and developed an efficient
approach to obtain the estimates based on the stochastic EM.
Since the conditional distribution of the latent data in our case
is complicated, we proposed a Gibbs sampling scheme to draw
realizations from it. The convergence of the proposed algorithm
to the stationary points has been established. Simulations show
that the proposed approach can provide reliable estimates from
incomplete time series with different percentages of missing
values, and is robust to outliers. Although in this paper we only
focus on the univariate AR model with the Student’s t distributed
innovations due to the limit of the space, our method can be
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TABLE III
ESTIMATION AND PREDICTION RESULTS FOR THE HANG SENG INDEX RETURNS

extended to multivariate AR model and also other heavy-tailed
distributed innovations.

APPENDIX A
PROOF FOR LEMMAS 1 AND 2

A. Proof for Lemma 1

The conditional distribution of τ |ym,yo;θ is

p (τ |ym,yo;θ)

=
p (y, τ ;θ)
p (y;θ)

∝ p (y, τ ;θ)

=
T∏

t=2

(
ν
2

) ν
2 τ

ν −1
2

t

Γ
(
ν
2

)√
2πσ2

exp
(
− τt

2σ2 (yt − ϕ0 − ϕ1yt−1)
2 − ν

2
τt

)

∝
T∏

t=2

τ
ν −1

2
t exp

(
−
(

(yt − ϕ0 − ϕ1yt−1)
2

2σ2 +
ν

2

)
τt

)
, (48)

which implies that {τt} are independent from each other with

p (τt |ym,yo;θ)

∝ τ
ν −1

2
t exp

(
−
(

(yt − ϕ0 − ϕ1yt−1)
2

2σ2 +
ν

2

)
τt

)
.

(49)

Comparing this expression with the pdf of the gamma distribu-
tion, we get that τt |ym,yo;θ follows a gamma distribution:

τt |ym,yo;θ

∼ Gamma

(
ν + 1

2
,

(yt − ϕ0 − ϕ1yt−1)
2/σ2 + ν

2

)
.

(50)

B. Proof for Lemma 2

According to the Gaussian mixture representation (11) and

(12), given τ and θ, εt follows a Gaussian distribution: εt
i.i.d.∼

N (μ, σ
2

τt
). From equation (2), we can see that, given τ and θ,

the distribution of yt conditional on all the preceding data Ft−1 ,
only depends on the previous sample yt−1 :

p (yt |τ ,Ft−1 ;θ) = p (yt |τ , yt−1 ;θ) . (51)

In addition, the distribution of yt conditional on all the preceding
observed data Fo

t−1 , τ , and θ, only depends on the nearest

observed sample:

p
(
yt |τ ,Fo

t−1 ;θ
)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p (yt |τ , yt−1 ;θ) t = td + nd + 2, . . . , td+1 ,

for d = 0, 1, . . . ,D,
p (yt |τ , yt−nd−1 ;θ) t = td + nd + 1,

for d = 1, 2, . . . ,D.

(52)

The first case refers to the situation where the previous sample
yt−1 is observed, while the second case is when yt−1 is missing.

Based on the above properties, we have

p (ym|τ ,yo;θ) =
∏T

t=2 p (yt |τ ,Ft−1 ;θ)∏
t∈Co

p
(
yt |τ ,Fo

t−1 ;θ
) (53a)

=
∏T

t=2 p (yt |τ , yt−1 ;θ)
∏D

d=0
∏td+ 1

t=td +nd +2 p (yt |τ , yt−1 ;θ)

× 1
∏D

d=1 p (ytd +nd +1 |τ , ytd ;θ)
(53b)

=

∏D
d=1
∏td +nd +1

t=td +1 p (yt |τ , yt−1 ;θ)
∏D

d=1 p (ytd +nd +1 |τ , ytd ;θ)
(53c)

=
D∏

d=1

p (yd , ytd +nd +1 |τ , ytd ;θ)
p (ytd +nd +1 |τ , ytd ;θ)

(53d)

=
D∏

d=1

p (yd |τ , ytd , ytd +nd +1;θ) , (53e)

where the equations (53a) and (53e) are from the definition of
conditional pdf, the equation (53b) is from (51) and (52). The
equation (53e) implies that the different missing blocks {yd} are
independent from each other, and the conditional distribution of
yd only depends on the two nearest observed samples ytd and
ytd +nd +1 .

To obtain the pdf of the missing block p(yd |τ , ytd , ytd +nd +1;
θ), we first analyze the joint pdf of the missing block and next
observed sample ycd = [yTd , ytd +nd +1]T = [ytd +1 , ytd +2 , . . . ,
ytd +nd +1]: p(ycd |τ , ytd ;θ). Given τ , ytd , and θ, from (2), we
have
ytd +i = ϕ0 + ϕ1ytd +i−1 + εtd +i

= ϕ0 + ϕ1 (ϕ0 + ϕ1ytd +i−2 + εtd +i−1) + εtd +i

= ϕ0 + ϕ1ϕ0 + ϕ2
1ytd +i−2 + ϕ1εtd +i−1 + εtd +i

=
i−1∑

q=0

ϕq1ϕ0 + ϕi1ytd +
i∑

q=1

ϕ
(i−q)
1 εtd +q ,

(54)

for i = 1, 2, . . . , nd + 1, which means that ytd +i can be ex-
pressed as the sum of the constant

∑i−1
q=0 ϕ

q
1ϕ0 + ϕi1ytd and a
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linear combination of the independent Gaussian random vari-
ables εtd +1 , εtd +2 , . . ., εtd +i . Therefore, we can obtain that ycd
follows a Gaussian distribution as follows:

ycd |τ , ytd ;θ ∼ N (μcd ,Σcd) , (55)

where the i-th component of μcd

μcd(i) = E [ytd +i ]

= E

[
i−1∑

q=0

ϕq1ϕ0 + ϕi1ytd +
i∑

q=1

ϕ
(i−q)
1 εtd +q

]

=
i−1∑

q=0

ϕq1ϕ0 + ϕi1ytd +
i∑

q=1

ϕ
(i−q)
1 E [εtd +q ]

=
i−1∑

q=0

ϕq1ϕ0 + ϕi1ytd ,

(56)

and the component in the i-th column and the j-th row of Σcd

Σcd(i,j ) = E
[(
ytd +i − μcd(i)

) (
ytd +j − μcd(j )

)]

= E

[(
i∑

q1 =1

ϕ
(i−q1 )
1 εtd +q1

)(
j∑

q2 =1

ϕ
(j−q2 )
1 εtd +q2

)]

=
i∑

q1 =1

j∑

q2 =1

ϕ
(i+j−q1 −q2 )
1 E [εtd +q1 εtd +q2 ]

= σ2
min(i,j )∑

q=1

ϕ
(i+j−2q)
1

τtd +q
.

(57)
with the last equation following from

E [εtd +q1 εtd +q2 ] =

{
σ 2

τt d + q 1
, q1 = q2 ;

0, q1 �= q2 .

Recall that p(yd |τ , ytd , ytd +nd +1;θ) is a conditional pdf
of p(yd , ytd +nd +1 |τ , ytd ;θ). Since conditional distributions
of a Gaussian distribution is Gaussian, we can get that
yd |τ , ytd , ytd +nd +1;θ follows a Gaussian distribution as (28).
The parameters of this conditional distribution can be computed
based on

μd = μcd(1:nd ) +
Σcd(1:nd ,nd +1)

Σcd(nd +1,nd +1)

(
ytd +nd +1 − μcd(nd +1)

)
,

(58)
and

Σd = Σcd(1:nd ,1:nd ) −
Σcd(1:nd ,nd +1)Σcd(nd +1,1:nd )

Σcd(nd +1,nd +1)
, (59)

where μcd(a1 :a2 ) denotes the subvector consisting of the a1-
th to a2-th component of μcd , and the Σcd(a1 :a2 ,b1 :b2 ) means
the submatrix consisting of the components in the a1-th to a2-
th rows and the b1-th to b2-th columns of Σcd . Plugging the
equations (56) and (57) into the equations (58) and (59) gives
the equations (29) and (30), respectively.

APPENDIX B
PROOF FOR CONDITIONS (M1)-(M5) AND (SAEM2)-(SAEM3)

In this section, we will establish the listed conditions one
by one. The observed data yo is known. We assume that yo is

finite. Since the parameter space Θ is a large bounded set with
ν > 2, we can assume that |ϕ0 | < ϕ+

0 , |ϕ1 | < ϕ+
1 , σ > σ−, and

ν− < ν < ν+ , where ϕ+
0 , ϕ+

1 , and ν+ are very large positive
numbers, σ− is a very small positive number, and ν− is a very
small positive number satisfying ν− ≥ 2. We first prove the
conditions (M1)-(M5), then prove the conditions (SAEM2) and
(SAEM3).

A. Proof of (M1)-(M5)

The proof begins by establishing the following two interme-
diary lemmas.

Lemma 3: For any yo and θ ∈ Θ, p(yo;θ) =
∫∫

p(y, τ ;
θ)dymdτ =

∫
p(y;θ)dym <∞.

Lemma 4: For any yo , θ ∈ Θ and 1 < t ≤ T

∫∫
g (y, τ ) p (y, τ ;θ) dymdτ <∞, (60)

where g(y, τ ) can be τt , τ 2
t , y2

t , τty
2
t−1 , τty2

t , or − log(τt)
Lemma 3 indicates that the observed data likelihood p(yo;θ)

is bounded, and Lemma 4 shows that the expectation of g(y, τ )
is bounded. These lemmas provide the key ingredients required
for establishing (M1)-(M5), and their usage for subsequent anal-
ysis is self-explanatory. Due to space limitations, we do not
include their proofs here. Interested readers may refer to the
supplementary material of the current paper.

(M1) For condition (M1), based on (18), we can get

∫∫
‖s (yo,ym, τ ) ‖p (ym, τ |yo;θ) dymdτ

=
∫∫ ‖s (yo,ym, τ ) ‖p (yo,ym, τ ;θ) dymdτ

p (yo;θ)

≤ 1
p (yo;θ)

T∑

t=2

∫∫ (∣∣ log (τt) − τt
∣∣+
∣∣τty2

t

∣∣+
∣∣τt
∣∣

+
∣∣τty2

t−1

∣∣+
∣∣τtyt

∣∣+
∣∣τtytyt−1

∣∣

+
∣∣τtyt−1

∣∣
)
p (yo,ym, τ ;θ) dymdτ

≤ 1
p (yo;θ)

T∑

t=2

∫∫ (
τt − log (τt) + τty

2
t + τt

+ τty
2
t−1 +

τ 2
t + y2

t

2
+
τt
(
y2
t + y2

t−1
)

2

+
τ 2
t + y2

t−1

2

)
p (yo,ym, τ ;θ) dymdτ

<∞,

(61)

where the three inequalities follow from the triangular inequal-

ity, the property of squares x1x2 ≤ x2
1 +x2

2
2 , and Lemma 4, re-

spectively.
(M2) From the definition of ψ(θ) and φ(θ) in (16) and (17),

their continuous differentiability can be easily verified.
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(M3) For condition (M3),

s̄ (θ) =
∫∫

s (yo,ym, τ ) p (ym, τ |yo;θ) dymdτ

=
∫∫

s (yo,ym, τ )
p (y, τ ;θ)
p (yo;θ)

dymdτ

=
∫∫

s (yo,ym, τ ) p (y, τ ;θ) dymdτ∫∫
p (y, τ ;θ) dymdτ

. (62)

Since
∫∫

p(y, τ ;θ)dymdτ = p(yo;θ) > 0 and p(y, τ ;θ) is
continuously differentiable, which can be easily checked from
its definition (19), we can get that s̄(θ) is continuously differ-
entiable.

(M4) Since
∫∫

p(y, τ ;θ)dymdτ > 0, and p(y, τ ;θ) is 7
times differentiable, l(θ;yo) = log(

∫∫
p(y, τ ;θ)dymdτ ) is 7

times differentiable. For the verification of the equation (46),
according to Leibniz integral rule, the equation (46) holds under
the following three conditions:

1)
∫∫

p(y, τ ;θ)dymdτ <∞,

2) ∂p(y ,τ ;θ)
∂θ exists for all the θ ∈ Θ,

3) there is an integrable function g(y, τ ) such that | ∂p(y ,τ ;θ)
∂θ |

≤ g(y, τ ) for all θ ∈ Θ and almost every y and τ .
Since the first condition has been proved in Lemma 3, and

the second condition can be easily verified from its definition,
here we focus on the third condition.

From the equation (13), the derivative of p(y, τ ;θ) with re-
spect to ϕ0 is
∣∣∣∣
∂p (y, τ ;θ)

∂ϕ0

∣∣∣∣

=

∣∣∣∣∣p (y, τ ;θ)
T∑

j=2

τj (yj − ϕ0 − ϕ1yj−1)
σ2

∣∣∣∣∣

≤ p (y, τ ;θ)
σ2

T∑

j=2

(|τj yj | + |ϕ0τj | + |ϕ1τj yj−1 |)

≤ p (y, τ ;θ∗)
(σ−)2

T∑

j=2

{(
τ 2
j + y2

j

2
+ ϕ+

0 τj +
ϕ+

1

(
y2
j−1 + τ 2

j

)

2

)}

= gϕ0 (y, τ ) ,
(63)

where θ∗ = arg maxθ∈Θ p(y, τ ;θ).The first inequality follows
from the triangle inequality, and the second inequality follows
from p(y, τ ;θ∗) ≥ p(y, τ ;θ), |ϕ0 | < ϕ+

0 , |ϕ1 | < ϕ+
1 ,σ > σ−,

and the property of squares.
The derivative with respect to ϕ1 is
∣∣∣∣
∂p (y, τ ;θ)

∂ϕ1

∣∣∣∣

=
∣∣∣∣p (y, τ ;θ)

T∑

j=2

1
σ2 τj yj−1 (yj − ϕ0 − ϕ1yj−1)

∣∣∣∣

≤ p (y, τ ;θ)
σ2

T∑

j=2

(
|τj yj yj−1 | + |ϕ0τj yj−1 | + |ϕ1τj y

2
j−1 |
)

≤ p (y, τ ;θ∗)
(σ−)2

T∑

j=2

(
τj
(
y2
j + y2

j−1

)

2
+
ϕ+

0

(
τ 2
j + y2

j−1

)

2

+ ϕ+
1 τj y

2
j−1

)

= gϕ1 (y, τ ) , (64)

where the first inequality follows from the triangle inequality,
and the second inequality follows from |ϕ0 | < ϕ+

0 , |ϕ1 | < ϕ+
1 ,

σ > σ−, and the property of squares.
The derivative with respect to σ2 is∣∣∣∣
∂p (y, τ ;θ)

∂σ2

∣∣∣∣

= p (y, τ ;θ)
T∑

j=2

{
τj

2σ4 (yj − ϕ0 − ϕ1yj−1)
2 − 1

2σ2

}∣∣∣∣

≤ p (y, τ ;θ)
T∑

j=2

{
τj

2σ4 (yj − ϕ0 − ϕ1yj−1)
2 +

1
2σ2

}

≤ p (y, τ ;θ)
T∑

j=2

{
τj

2σ4

(
2 (yj − ϕ0)

2 + 2ϕ2
1y

2
j−1

)
+

1
2σ2

}

≤ p (y, τ ;θ)
T∑

j=2

{
τj

2σ4

(
4y2

j + 4ϕ2
0 + 2ϕ2

1y
2
j−1
)

+
1

2σ2

}

≤ p (y, τ ;θ∗)
T∑

j=2

{
τj

2 (σ−)2

(
4y2

j + 4
(
ϕ+

0

)2 + 2
(
ϕ+

1

)2
y2
j−1

)

+
1

2 (σ−)2

}

= gσ 2 (y, τ ) , (65)

where the first inequality follows from the triangle inequality, the
second and third inequalities follow from the property of squares
(x1 − x2)2 ≤ 2(x2

1 + x2
2), and the last inequality follows from

p(y, τ ;θ∗) ≥ p(y, τ ;θ), |ϕ0 | < ϕ+
0 , |ϕ1 | < ϕ+

1 , and σ > σ−.
The derivative with respect to ν is∣∣∣∣
∂p (y, τ ;θ)

∂ν

∣∣∣∣

=
∣∣∣∣p (y, τ ;θ)

T∑

j=2

1
2

(
1 + log

(ν
2

)
− Ψ

(ν
2

)
+ log (τj) − τj

)∣∣∣∣

≤ 1
2
p (y, τ ;θ)

T∑

j=2

{∣∣∣∣1 + log
(ν
2

)
− Ψ

(ν
2

)∣∣∣∣+
∣∣∣∣ log (τj ) − τj

∣∣∣∣

}

≤ p (y, τ ;θ∗)
T∑

j=2

(
1
2

+
1
2

log
(
ν−

2

)
− 1

2
Ψ
(
ν−

2

)

+
1
2
τj − 1

2
log (τj )

)

= gν (y, τ ) , (66)

where Ψ(·) is the digamma function. The first inequality follows
from the triangle inequality, and the second inequality is due
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to that log( ν2 ) − Ψ( ν2 ) is positive and strictly decreasing for
ν ≥ ν− [30].

Based on Lemmas 3 and 4, we can obtain that
∫∫

gϕ0 (y, τ , )
dymdτ <∞,

∫∫
gϕ1 (y, τ ) dymdτ <∞,

∫∫
gσ 2 (y, τ )dymdτ

<∞, and
∫∫

gν (y, τ )dymdτ <∞. The condition (M4) is ver-
ified.

(M5) This condition requires the existence of the global maxi-
mizer θ̃(s̄) forQ(θ, s̄) and its continuous differentiability. Since
Q(θ, s̄) takes the same form with Q̂(θ, ŝ(k)), the maximizer will
also take the same form. From (34)–(37), we have

ϕ̃0 (s̄) =
s̄5 − ϕ̃1 (s̄) s̄7

s̄3
, (67)

ϕ̃1 (s̄) =
s̄3 s̄6 − s̄5 s̄7

s̄3 s̄4 − s̄2
7
, (68)

(σ̃ (s̄))2 =
1

T − 1

(
s̄2 + (ϕ̃0 (s̄))2 s̄3 + (ϕ̃1 (s̄))2 s̄4

− 2ϕ̃0 (s̄) s̄5 − 2ϕ̃0 (s̄) s̄6 + 2ϕ̃0 (s̄) ϕ̃1 (s̄) s̄7

)
,

(69)

and

ν̃ (s̄) = arg max
ν−<ν<ν+

f (ν, s̄1) , (70)

where s̄i (i = 1, . . . 7) is the i-th component of s̄. It can be easily
verified that ϕ̃0(s̄), ϕ̃1(s̄) and (σ̃(s̄))2 are continuous functions
of s̄, and are 7 times differentiable with respect to s̄. For ν̃(s̄),
the gradient of f(ν, s̄1) at ν̃

g (ν̃, s̄1) =
∂f (ν, s̄1)

∂ν

∣∣∣∣∣
ν= ν̃

=
1
2

(
log
(
ν̃

2

)
− Ψ

(
ν̃

2

)
+ 1 +

s̄1

T − 1

)

= 0.

(71)

According to the implicit function theorem [38], since g(ν̃, s̄1)
is 7 times continuously differentiable and ∂g(ν̃ ,s̄1 )

∂ ν̃ = 1
2 ( 1

ν̃ −
1
2 Ψ′( ν̃2 )) �= 0 for any ν̃ and s̄1 [30], ν̃(s) is 7 times continuously
differentiable with respect to s̄.

B. Proof of (SAEM2) and (SAEM3)

The condition (SAEM2) has been verified in the proof of the
conditions (M4) and (M5). The condition (SAEM3.1) holds due
to the compactness assumption of the chain in the theorem. The
functions s(yo,ym, τ ) and {ŝ(k)} are continuous function of
the chain, therefore, they also take values in a compact set ac-
cording to the boundness theorem, which implies the condition
(SAEM3.2) hold. Now we focus on the proof of the conditions
(SAEM3.3) and (SAEM3.4).

From the definition of the transition probability Πθ(ym, τ ,
y′

m, τ
′) in (24), we can easily verify that the transition probabil-

ity Πθ(ym, τ ,y′
m, τ

′) is continuously differentiable with respect
to θ. In addition, since the derivative is a continuous function
of θ ∈ V and (ym, τ ,y′

m, τ
′) ∈ Ω2 , where V and Ω2 are com-

pact set, according to the boundness theorem, the derivative is
bounded. Therefore, Πθ(ym, τ ,y′

m, τ
′) is Lipschitz continuous,

i.e., for any (ym, τ ,y′
m, τ

′) ∈ Ω2 , there exists a real constant

K(ym, τ ,y′
m, τ

′) such that for any (θ,θ′) ∈ V 2 ,
∣∣∣Πθ (ym, τ ,y′

m, τ
′) − Πθ′ (ym, τ ,y′

m, τ
′)
∣∣∣

≤ K (ym, τ ,y′
m, τ

′) |θ − θ′|.
(72)

It follows that

sup
(ym,τ ,y ′

m,τ
′)∈Ω2

∣∣∣Πθ (ym, τ ,y′
m, τ

′) − Πθ′ (ym, τ ,y′
m, τ

′)
∣∣∣

≤ L|θ − θ′|
(73)

with L = max(ym,τ ,y ′
m,τ

′)∈Ω2K(ym, τ ,y′
m, τ

′), which implies
that the condition (SAEM3.3) is verified.

The condition (SAEM3.4) is about the uniform ergodicity of
the Markov chain generated by the transition probability Πθ(ym,
τ , y′

m, τ
′). According to Theorem 8 in [39], a Markov chain is

uniformly ergodic, if the transition probability satisfies some mi-
norization condition, i.e., there exists α ∈ N+ and some prob-
ability measure δ(·) such that Πα

θ (ym, τ ,y′
m, τ

′) ≥ εδ(y′
m, τ

′)
for any (ym, τ ,y′

m, τ
′) ∈ Ω2 . Recall our transition probability

Πθ(ym, τ , y′
m, τ

′) is a continuous function for (ym, τ ) ∈ Ω,
according to the extreme value theorem, there must exist an
infimum g(y′

m, τ
′,θ) = inf(ym,τ )∈ΩΠθ(ym, τ , y′

m, τ
′). It fol-

lows that

Πθ (ym, τ , y′
m, τ

′) ≥ εδ (y′
m, τ

′) (74)

with ε =
∫∫

g(y′
m, τ

′,θ)dτ ′dy′
m, and δ(y′

m, τ
′) = ε−1g(y′

m,
τ ′,θ). Therefore, the minorization condition holds in our case,
and thus, the Markov chain generated by Πθ(ym, τ , y′

m, τ
′) is

uniformly ergodic. The condition (SAEM3.4) is verified.
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